找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 899|回复: 0
打印 上一主题 下一主题

[材料资讯] 陈涛在二维非对称超薄膜构建及其仿生应用方面取得进展

[复制链接]

8

主题

18

帖子

20

积分

新手上路

Rank: 1

积分
20
跳转到指定楼层
楼主
发表于 2019-4-28 16:17:08 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
二维非对称(Janus)薄膜材料因其独特的物理/化学性质,在柔性传感、能源存储与转换、仿生驱动器等领域具有巨大的应用价值,近年来受到越来越广泛的关注和研究。为实现二维Janus薄膜材料在特定领域的应用,功能单元的选择、界面集成和功能协同极为关键。


  碳纳米材料(碳纳米管、石墨烯等)因其优越的物理、化学以及电学性能,被认为是一种理想的导电、导热功能单元材料。而高分子材料则具有碳材料所不具备的可拉伸性、化学功能性、刺激响应性等性质。因此如何将二者进行有效的界面结合,并实现其功能协同性应用具有重要意义。


  为此,中国科学院宁波材料技术与工程研究所研究员陈涛团队开展了一系列工作。为实现碳纳米材料的可控、高效组装,科研人员发展了一种水-空界面毛细力诱导挤压的方法,构建了大面积、可任意转移的碳纳米管薄膜(Chem. Mater., 2016, 28, 7125)。进一步研究人员发现,所获得碳纳米管薄膜在经过后续的可控陈化组装后,可在水-空界面实现非对称的亲疏水性(Chem. Commun., 2018, 54, 12804)。这种具有非对称亲疏水性的碳纳米管薄膜可作为一种重要的活性功能平台进行后续的界面非对称复合,实现柔性可拉伸的传感器件(Adv. Mater. Interfaces 2016, 3, 1600170; J. Mater. Chem. C, 2018, 6, 6666)。


  基于上述研究,最近,研究人员以水-空界面陈化组装所得到的碳纳米管进行原位的聚二甲基硅氧烷弹性体的非对称界面可控集成,获得了超薄、可拉伸、自粘附、自适性的Janus导电复合薄膜。通过调控导电单元和弹性单元的相对组成,可有效实现厚度、粘附性、导电性的有效调控。所得到的Janus超薄膜可沿着皮肤纹路紧密贴附,其可作为表皮电子器件,实现对人体肢体运动、生理脉搏信号的实时高灵敏检测。还可作为自粘附的非支撑器件,对外界的非接触性信号,如气流抖动、微弱气压变化、空气振动等实现高效探测。此外,所制备的Janus超薄膜具有良好的气动驱动的性质,可在微小的气压下实现可控驱动行为。基于这些优异的性质,研究人员构建了一种仿青蛙鸣囊的自传感驱动器,能在气动驱动下进行可控的驱动,驱动的过程中对碳管的拉伸会转化为电信号进行输出,在智能仿生皮肤领域具有潜在应用价值(ACS Nano, 2019, DOI:10.1021/acsnano.8b09600)。


  以上工作得到国家自然科学基金(51573203)、中科院前沿科学重点研究项目(QYZDB-SSW-SLH036)、中科院国际合作重点项目(174433KYSB20170061)的资助。

陈涛,博士,研究员,博士生导师。2006年毕业于浙江大学化学反应工程国家重点实验室,获得高分子化学与物理博士学位。先后于2006年到2007年在英国华威大学(University of Warwick)化学系及于2007年到2010年在美国杜克大学(Duke University)材料科学与工程系从事博士后研究;2010年到2012年,作为洪堡学者在德国德累斯顿工业大学(Technische Universit?t Dresden)化学系从事科研工作。2012年加入中科院宁波材料所,组建智能高分子材料课题组。在Chemical Society Review, Progress Polymer Science, Advanced Materials, Nature Communications, Advanced Functional Materials, Chemical Science, Chemistry of Materials, Small, Chemical Communications, ACS Appl. Mater. Interfaces, Journal of Materials Chemistry A和Polymer Chemistry等期刊上发表一作/通讯作者SCI学术论100余篇,共发表SCI论文160余篇,引用3900余次,H因子为35,合作出版专著4本,申请20多项国家发明专利,5项获得授权。主持国家自然科学基金青年/面上项目、中科院前沿局重点研发计划、中科院国际合作局重点项目、浙江省“杰出青年科学基金”项目等。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-17 02:44 , Processed in 0.086194 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表