找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 572|回复: 0
打印 上一主题 下一主题

[专家学者] 上海交通大学材料学院塑性成形技术与装备研究院陈飞

[复制链接]

234

主题

236

帖子

256

积分

中级会员

Rank: 3Rank: 3

积分
256
跳转到指定楼层
楼主
发表于 2017-4-1 14:28:20 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
姓名:         陈飞
职称:         特别研究员
博导/硕导:         博导
所属二级机构:          塑性成形技术与装备研究院
通讯地址:         上海市华山路1954号
邮编:         200030
E-mail:         feichen@sjtu.edu.cn
联系电话:         13127621310
从事专业:         材料加工工程


学习与工作简历:        2012年于上海交通大学,获博士学位。2012年至2016年分别在上海交通大学和英国诺丁汉大学从事博士后研究。2017年被上海交通大学聘为特别研究员。
研究方向一        生物材料加工
研究方向二        金属热变形过程微观组织演变与预报
研究情况       
1. 2015-2016 EPSRC-MeDe Project “EPSRC Centre for Innovative Manufacturing in Medical Devices”,主要参与人
2. 2014-2016  EPSRC Project “Developing a Bespoke Incremental Sheet Forming Machine for Cranioplasty”,主要参与人
3. 2013-2014  中国博士后基金“非连续热锻过程晶粒演变三维元胞自动机定量化模拟研究”,负责人
4. 2013-2014  上海交大博后启动基金“热锻过程微观组织演变介观模拟方法研究”,负责人
5. 2017-2020  国家自然科学基金面上项目“金属粗大晶粒热变形的微区协调机制及其对组织演变和塑性损伤的影响机理研究”,主要参与人
6. 2011-2013  国家自然科学基金面上项目“能源大锻件材料非连续热变形过程晶粒演变的元胞自动机建模方法与多尺度模拟”,主要参与人
7. 2011-2016  国家973计划课题“大型锻件热塑性成形过程宏微观物理演化规律”,主要参与人
8. 2007-2010  国家973计划课题“大型构件制造操作运动轨迹建模”,主要参与人
讲授主要课程       
教学研究       


代表性论文、论著       
  [1] Chen F, Gatea S, Ou H, Long H. Fracture characteristics of PEEK at various stress triaxialities. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 173-186.
  [2] Chen F, Ou H, Lu B, Long H. A constitutive model of polyether-ether-ketone (PEEK). Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 427-433.
  [3] Chen F, Feng GW, Cui ZS. New constitutive model for hot working. Metallurgical and Materials Transactions A, 2016, 47, 1229-1239.
  [4] Chen F, Cui ZS, Ou H, Long H. Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy. Applied Physics A, 2016, 122, 890-903.
  [5] Chen F, Ren FC, Chen J, Cui ZS, Ou H. Microstructural modeling and numerical simulation of multi-physical fields for martensitic stainless steel during hot forging process of turbine blade. The International Journal of Advanced Manufacturing Technology, 2016, 82, 85-98.
  [6] Chen F, Liu J, Ou H, Lu B, Cui ZS, Long H. Flow characteristics and intrinsic workability of IN718 superalloy. Materials Science and Engineering A, 2015, 642, 279-287.
  [7] Chen F, Qi K, Cui ZS, Lai XM. Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Computational Materials Science, 2014, 83, 331-340.
  [8] Chen F, Cui ZS, Chen J. Prediction of microstructure evolution during hot forging. Manufacturing Review, 2014, 1, 6.
  [9] Chen F, Sui DS, Cui ZS. Static recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel. Journal of Materials Engineering and Performance, 2014, 23, 3034-3041.
  [10] Chen F, Ren FC, Cui ZS, Lai XM. Constitutive modeling for elevated temperature flow behavior of 30Cr2Ni4MoV ultra-super-critical rotor steel. Journal of Iron and Steel Research, International, 2014, 21, 521-526.
  [11] Chen F, Cui ZS, Sui DS. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part Ш: Metadynamic recrystallization. Materials Science and Engineering A, 2012, 540, 46-54.
  [12] Chen F, Cui ZS. Mesoscale simulation of microstructural evolution during multi-stage hot forging processes. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045008, 1-16.
  [13] Chen F, Cui ZS, Chen SJ. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part Ι: Dynamic recrystallization. Materials Science and Engineering A, 2011, 528, 5073-5080.
  [14] Chen F, Cui ZS. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Materials Science and Engineering A, 2010, 527, 5539-5549.
  [15] Chen F, Cui ZS Liu J, Zhang XX, Chen W. Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 075015, 1-19.
  [16] Dong DQ, Chen F*, Cui ZS. Investigation on static recrystallization behavior of SA508-3 steel during hot deformation. Journal of Iron and Steel Research, International, 2016, 23(5), 466-474.
  [17] Dong DQ, Chen F*, Cui ZS. Modeling of austenite grain growth during austenitization in a low alloy steel. Journal of Materials Engineering and Performance, 2016, 25, 152-164.
  [18] Dong DQ, Chen F*, Cui ZS. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification. Materials Science and Engineering A, 2015, 634, 103-115.
  [19] Ren FC, Chen F*, Chen J. Investigation on dynamic recrystallization behavior of martensitic stainless steel. Advances in Materials Science and Engineering, 2014, 986928, 1-16.
  [20] Liu K, Dong XH, Xie HY, Wu YJ, Peng F, Chen F. Asymmetry in the hot deformation behavior of AZ31B magnesium sheets. Materials Science and Engineering A, 2016, 659, 198-206.
  [21] Xie HY, Dong XH, Peng F, Wang Q, Liu K, Wang XB, Chen F. Investigation on the electrically-assisted stress relaxation of AZ31B magnesium alloy sheet. Journal of Materials Processing Technology, 2016, 227, 88-95.
  [22] Xie HY, Dong XH, Wang Q, Peng F, Liu K, Wang XB, Chen F. Investigation on transient electrically-assisted stress relaxation of QP980 advanced high strength steel. Mechanics of Materials, 2016, 93, 238-245.
  [23] Liu RZ, Lu B, Xu DK, Chen J, Chen F, Ou H. Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy. The International Journal of Advanced Manufacturing Technology. The International Journal of Advanced Manufacturing Technology, 2016, 82, 85-98.
  [24] Sui DS, Chen F, Zhang PP, Cui ZS. Numerical simulation of microstructure evolution for SA508-3 steel during inhomogeneous hot deformation process. Journal of Iron and Steel Research, International, 2014, 11, 1022-1029.
  [25] He JL, Cui ZS, Chen F. The new ductile fracture criterion for 30Cr2Ni4MoV ultra-super-critical rotor steel at elevated temperatures. Materials & Design, 2013, 52, 547-555.
  [26] Ren FC, Chen J, Chen F. Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel considering strain effect. Transactions of Nonferrous Metals Society of China, 2014, 24, 1407-1413.
  [27] Chen F, Cui ZS. Modeling the dynamic recrystallization: A modified cellular automaton method. Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016), Pennsylvania, USA.
  [28] Chen F, Lu B, Liu RZ, Ou H, Long H, Xu DK. Correlation between formability and initial grain size in incremental sheet metal forming of pure titanium parts. IDDRG 2015 Conference, Shanghai, China.
  [29] Chen F, Gao L, Cui ZS. Mathematical modeling of the critical condition for dynamic recrystallization. The 11th ICTP, ICTP2014, Nagoya, Japan.
  [30] Chen F, Cui ZS, Liu J. Mesoscale simulation of the microstructural evolution for low pressure rotor steel during multi-stage hot forging processes. The 10th ICTP, ICTP2011, Aachen, Germany.
  [31] 陈飞,崔振山,董定乾,微观组织演变元胞自动机模拟研究进展,机械工程学报,2014,4,30-39.
  [32] 崔振山,陈文,陈飞,张效迅,大锻件控性锻造过程的计算机模拟技术,机械工程学报,2010,11, 2-8.
毕业博士生数       
毕业硕士生数       
参加学术团体、任何职务       
申请专利        软件著作权2项(公开号:2014SR082811,2015SR216723)
荣誉和奖励       
2011 上海市优秀毕业生
2016 诺丁汉大学PDPR考核Level one


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-20 20:30 , Processed in 0.331570 second(s), 34 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表