找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 2740|回复: 2
打印 上一主题 下一主题

[专家学者] 东北师范大学化学学院功能材料化学研究所吴兴隆

[复制链接]

95

主题

111

帖子

129

积分

注册会员

Rank: 2

积分
129
跳转到指定楼层
楼主
发表于 2017-9-9 08:38:02 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
吴兴隆东北大学教授,博士生导师,中科院化学所获得博士学位,北京理工大学获得硕士学位,长期从事纳米新能源材料与器件(锂离子电池、钠离子电池和电化学电容器等)方面的研究工作,已在Adv. Mater., Adv. Energy Mater., Nano Energy等国际著名学术期刊发表研究论文100多篇,其中9篇被评选为ESI top 1%高引用研究论文,文章总引用超过5000次以上,H-index为32;授权或申请发明专利10余项,负责了锂离子电池正极材料从实验室到中试,再到小规模工业化生产的全过程,实现了其优化改性和定型生产,开发了锂离子动力电池、移动基站电池组等多款高性能锂离子电池产品。作为项目负责人或主要技术骨干,负责或参与了科技部、国家自然科学基金委、中科院、博士后科学基金等多个研究课题,获得了教育部自然科学研究成果一等奖、中国科学院科技成果转化二等奖、中国材料研究学会科学技术二等奖、第二届中国青少年科技创新奖、第九届“挑战杯”特等奖、中国电化学会优秀论文奖等多项科技奖励和荣誉称号。



吴兴隆
东北师范大学化学学院
职  称:副教授
研究方向:电池材料、电化学
办公电话:0431-85098668/9128
办公地点:化学楼232B
电子邮件:wuxl100@nenu.edu.cn
个人简历

【欢迎2018年保送/报考东北师大的研究生联系加入本团队,从事储能材料、纳米材料和电化学等方向的相关研究和产品开发工作】
https://www.researchgate.net/profile/Xing-Long_Wu
【学习经历】
2008/09 - 2011/07,中国科学院化学研究所,分子纳米结构与纳米技术院重点实验室,博士;
2005/09 - 2007/07,北京理工大学,理学院化学系,硕士;
2001/09 - 2005/07,东北师范大学,化学学院,学士;
【工作经历】
2013/07 至今,东北师范大学化学学院,动力电池国家地方联合工程实验室,副教授,博士生导师(2016.12);
2014/10 - 2016/10,南洋理工大学(新加坡),材料科学与工程学院,访问学者/博士后;
2011/07 - 2013/07,中国科学院化学研究所,分子纳米结构与纳米技术院重点实验室,博士后;
2011/05 - 2013/08,五和动力技术有限公司,技术主管、总经理助理等(兼);
2007/08 - 2008/08,中国科学院化学研究所,分子纳米结构与纳米技术院重点实验室,项目聘用研究人员。
【主要科研方向】
1. 纳米能源材料(用于锂离子电池、钠离子电池和电化学电容器等);
2. 新型电化学储能器件;
3. 锂离子电池回收与利用。
【培养学生获奖情况】
1.        张孝华:2016年硕士国家奖学金(2万元);
2.        刘代伙:2016年博士校长奖学金(1万元);
3.        范朝英:2016年博士校长奖学金(1万元);
4.        万 放:2015年硕士国家奖学金(2万元),2014-2015学年优秀研究生奖学金,2015年度硕士生科研奖;
5.        李金月,2015年硕士国家奖学金(2万元),2013-2014学年优秀研究生奖学金;
6.        王 杰,2016年度硕士生科研奖;
7.        郭晋芝,2016年度研究生学术活动先进个人;
8.        侯宝华,2013-2014学年优秀研究生干部。


【已毕业学生情况】
1. 万 放,2013硕士,本科毕业学校:四川大学(保送),毕业去向:南开大学(读博),发表论文:Nano Energy, 2015, 13, 450,Energy Storage Materials, 2016, 5, 214, ACS Appl. Mater. Inter. 2016, 8, 7790,Chem Eur J, 2016, 22 (24), 8152-8157 (VIP), J. Alloy Compd, 2016, 672, 72;
2. 王 杰,2013硕士,本科毕业学校:渤海大学,毕业去向:北京理工大学(读博),发表论文:J. Power Sources, 2016, 307, 738,J. Alloys Compd, 2017, 694, 205;
3. 李金月,2013硕士,本科毕业学校:大连民族学院,毕业去向:东北师范大学(工作),发表论文:Chem. Commun., 2015, 51 (80), 14848,Chem Eng J,2017,316, 499.
【部分在读学生联系方式】
1. 侯宝华,本科毕业学校:兰州大学,QQ:724180623;
2. 刘丝雨,本科毕业学校:哈尔滨工业大学,QQ:494495801;
3. 范朝英,本科毕业学校:河南师范大学,QQ:1250713155;
4. 刘文昊,本科毕业学校:北京理工大学,QQ:2582270039;
5. 杨爱博,本科毕业学校:吉林大学,QQ:1298826209;
6. 刘代伙,本科毕业学校:遵义师范学院,QQ:972693869;
7. 宁秋丽,本科毕业学校:南京师范大学,QQ:1915648553;
8. 杨洋,本科毕业学校:大连理工大学,QQ:1152161627;
9. 李文灏,本科毕业学校:四川大学,QQ:1804494167;
10. 席晓彤,本科毕业学校:山西师范大学,QQ:2570367908;
11. 闫新,本科毕业学校:沈阳师范大学,QQ:1826098205。
【主要科研项目】
1. 化学氧键增强高容量合金化钠电复合负极材料的构筑与储钠机理研究,国家自然科学青年基金,2017.1-2019.12;
2. 钠离子电池高容量负极材料的微纳结构设计与储钠性能研究,北京分子科学国家实验室开放课题,2016.3-2018.2;
3. 高能量密度锂离子电池用高安全性磷酸盐类正极材料研究,吉林省自然科学青年科研基金,2015.01-2017.12;
4. 锂离子电池高性能硅基复合负极材料研究,吉林省自然科学基金面上项目,2014.01-2016.12;
5. 石墨烯基锂离子电池正极材料开发,企业横向合作项目,2014.4-2019.12;
6. 石墨烯在锂/钠离子电池中的应用与储能机理研究,中国博士后基金会“博士后国际交流计划派出项目”,2014.11-2016.10;
7. 高能量密度锂离子电池磷酸盐正极材料的研究,东北师范大学自然科学青年基金(2014.01-2015.12,已结题);
8. 高性能微纳结构锂空电池正极材料的研究,中国博士后科学基金项目(已结题)。


【Journal Reviewers For】
Angewandte Chemie International Edition, Advanced Materials, Advanced Energy Materials, Energy & Environmental Science, Journal of Materials Chemistry A, ACS Applied Materials & Interfaces, Chemistry - A European Journal, Chemistry - An Asian Journal, Physical Chemistry Chemical Physics, ChemElectrochem, Journal of Alloys and Compounds, Solid State Ionics, Journal of Nanoscience and Nanotechnology, RSC Advances, 物理化学学报。


【主要研究论文】
三篇第一作者的代表性论文:Adv. Mater. 2009, 21, 2710; Adv. Energy Mater. 2013, 3, 1155; ChemSusChem 2010, 3, 703.
近三年五篇通讯作者代表性论文:Advanced Materials 2017, in press, Nano Energy 2015, 13, 450, Energy Storage Materials 2016, 5, 214-222, Nanoscale Horizons 2016, 1 (6), 496-501, Journal of Materials Chemistry A 2015, 3, 19738.
通讯/第一作者等主要研究论文列表 (2017年5月更新):
【2017年】
1.        Guo, J.-Z.; Wang, P.-F.; Wu, X.-L.*; Zhang, X.-H.; Yan, Q.; Chen, H.; Zhang, J.-P.; Guo, Y.-G.*, High-Energy/Power and Low-Temperature Cathode for Sodium-Ion Batteries: In-Situ XRD Study and Superior Full-Cell Performance. Advanced Materials 2017, in press.
2.        Fan, C.; Liu, S.-Y.; Li, H.; Shi, Y.; Wang, H.-C.; Wang, H.; Sun, H.-Z.*; Wu, X.-L.*; Zhang, J.*, Synergistic mediation for sulfur conversion in lithium-sulfur batteries by Gerber tree-like interlayer with multiple components. Journal of Materials Chemistry A 2017, in press.
3.        Lü, H.-Y.; Zhang, X.-H.; Wan, F.; Liu, D.-S.; Fan, C.-Y.; Xu, H.-M.; Wang, G.*; Wu, X.-L.*, Flexible P-Doped Carbon Cloth: Vacuum-Sealed Preparation and Enhanced Na-Storage Properties as Binder-Free Anode for Sodium Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (14), 12518-12527.
4.        Fan, H.-H.; Li, H.-H.; Huang, K.-C.; Fan, C.-Y.; Zhang, X.-Y.; Wu, X.-L.*; Zhang, J.-P.*, Metastable Marcasite-FeS2 as a New Anode Material for Lithium Ion Batteries: CNFs-Improved Lithiation/Delithiation Reversibility and Li-Storage Properties. ACS Applied Materials & Interfaces 2017, 9 (12), 10708-10716.
5.        Pang, W.-L.; Zhang, X.-H.; Guo, J.-Z.; Li, J.-Y.; Yan, X.; Hou, B.-H.; Guan, H.-Y.; Wu, X.-L.*, P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. Journal of Power Sources 2017, 356, 80-88.
6.        Li, J.-Y.; Lü, H.-Y.; Zhang, X.-H.; Xing, Y.-M.; Wang, G.*; Guan, H.-Y.*; Wu, X.-L.*, P2-type Na0.53MnO2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries. Chem Eng J 2017, 316, 499-505.
7.        Liu, S.-Y.; Fan, C.-Y.; Wang, H.-C.; Zhang, J.-P.*; Wu, X.-L.*, Electrochemically In-Situ Formation of Stable Ti-Based Skeleton for Improved Li-Storage Properties: Case Study of Porous CoTiO3 Nanofibers. Chemistry – A European Journal 2017, in press.
8.        Xing, Y.-M.; Zhang, X.-H.; Liu, D.-H.; Li, W.-H.; Sun, L.-N.*; Geng, H.-B.; Zhang, J.-P.; Guan, H.-Y.*; Wu, X.-L.*, Porous Amorphous Co2P/N,B-Co-doped Carbon Composite as an Improved Anode Material for Sodium-Ion Batteries. ChemElectroChem 2017, in press.
9.        Wang, J.; Lü, H.-Y.; Fan, C.-Y.; Wan, F.; Guo, J.-Z.; Wang, Y.-Y.; Wu, X.-L.*, Ultrafine nano-Si material prepared from NaCl-Assisted magnesiothermic reduction of scalable silicate: Graphene-enhanced Li-Storage properties as advanced anode for lithium-ion batteries. J Alloy Compd 2017, 694, 205-216.
10.        Li, W.; Zhao, H.; Wang, J.*; Yao, C.; Wang, R.; Wu, X.-L.*, Disordered mesoporous polyacenes/sulfur nanocomposites: Superior cathode materials for lithium-sulfur batteries. J Alloy Compd 2017, 693, 1045-1051.


【2016年】
11.        Wan, F.; Lü, H.-Y.; Wu, X.-L.*; Yan, X.; Guo, J.-Z.; Zhang, J.-P.*; Wang, G.; Han, D.-X.; Niu, L.*, Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? Energy Storage Materials 2016, 5, 214-222.
12.        Liu, D.-H.; Lü, H.-Y.; Wu, X.-L.*; Wang, J.; Yan, X.; Zhang, J.-P.; Geng, H.; Zhang, Y.; Yan, Q.*, A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horizons 2016, 1 (6), 496-501.
13.        Zhang, X.-H.; Pang, W.-L.; Wan, F.; Guo, J.-Z.; Lü, H.-Y.; Li, J.-Y.; Xing, Y.-M.; Zhang, J.-P.; Wu, X.-L.*, P2–Na2/3Ni1/3Mn5/9Al1/9O2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanisam via Graphene Connection. ACS Applied Materials & Interfaces 2016, 8 (32), 20650-20659.
14.        Wan, F.; Guo, J.-Z.; Zhang, X.-H.; Zhang, J.-P.; Sun, H.-Z.; Yan, Q.; Han, D.-X.; Niu, L.; Wu, X.-L.*, In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (12), 7790-7799.
15.        Wan, F.; Li, Y.-H.; Liu, D.-H.; Guo, J.-Z.; Sun, H.-Z.; Zhang, J.-P.*; Wu, X.-L.*, Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries. Chemistry - A European Journal 2016, 22 (24), 8152-8157. (VIP)
16.        Fan, C.-Y.; Yuan, H.-Y.; Li, H.-H.; Wang, H.-F.; Li, W.-L.*; Sun, H.-Z.*; Wu, X.-L.*; Zhang, J.-P.*, The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li–S Batteries. ACS Applied Materials & Interfaces 2016, 8 (25), 16108-16115.
17.        Fan, C.-Y.; Liu, S.-Y.; Li, H.-H.; Wang, H.-F.; Wang, H.-C.; Wu, X.-L.*; Sun, H.-Z*.; Zhang, J.-P.*, Synergistic Design of Cathode Region for the High-Energy-Density Li–S Batteries. ACS Applied Materials & Interfaces 2016, 8 (42), 28689-28699.
18.        Fan, C.-Y.; Li, H.-H.; Wang, H.-F.; Sun, H.-Z.*; Wu, X.-L.*; Zhang, J.-P.*, Hierarchically Porous Carbon Derived from a Large-Scale Iron-based Organometallic Complex for Versatile Energy Storage. ChemSusChem 2016, 9 (12), 1483-1489.
19.        Wang, J.; Liu, D.-H.; Wang, Y.-Y.; Hou, B.-H.; Zhang, J.-P.; Wang, R.-S.*; Wu, X.-L.*, Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries. Journal of Power Sources 2016, 307, 738-745.
20.        Lü, H.-Y.; Wan, F.; Jiang, L.-H.; Wang, G.*; Wu, X.-L.*, Graphene Nanosheets Suppress the Growth of Sb Nanoparticles in an Sb/C Nanocomposite to Achieve Fast Na Storage. Part Part Syst Char 2016, 33, 204-211.
21.        Liu, D.-H.; Li, W.; Wan, F.; Fan, C.-Y.; Wang, Y.-Y.; Zhang, L.-L.; Lü, H.-Y.; Xing, Y.-M.; Zhang, X.-H.; Wu, X.-L.*, Restrain the Capacity Increase to Achieve Ultrastable Li-storage: A Case Study of MnO/Graphene-Based Nanohybrid and Its Full-Cell Performance. ChemElectroChem 2016, 3 (9), 1354-1359.
22.        Wan, F.; Lü, H.-Y.; Zhang, X.-H.; Liu, D.-H.; Zhang, J.-P.; He, X.; Wu, X.-L.*, The in-situ-prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries. J Alloy Compd 2016, 672, 72-78.
23.        Wang , Y.-Y.; Hou , B.-H.; Lü, H.-Y.; Lü, C.-L.*; Wu , X.-L.*, Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors. ChemistrySelect 2016, 1 (7), 1441-1447.


【2015年】
24.        Wan, F.; Wu, X.-L.*; Guo, J. Z.; Li, J. Y.; Zhang, J. P.*; Niu, L.*; Wang, R. S., Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy 2015, 13, 450-457.
25.        Liu, D.-H.; Lü, H.-Y.; Wu, X.-L.*; Hou, B.-H.; Wan, F.; Bao, S.-D.; Yan, Q.; Xie, H.-M.; Wang, R.-S.*, Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (39), 19738-19746.
26.        Li, J.-Y.; Wu, X.-L.*; Zhang, X.-H.; Lu, H.-Y.; wang, g.; Guo, J.-Z.; Wan, F.; Wang, R.*, Romanechite-structural Na0.31MnO1.9 nanofibers as high-performance cathode material for sodium ion battery. Chemical Communications 2015, 51 (80), 14848-14851.
27.        Guo, J.-Z.; Wu, X.-L.*; Wan, F.; Wang, J.; Zhang, X.-H.; Wang, R.-S.*, A superior Na3V2(PO4)3 based nanocomposite enhanced by both N-doped coating carbon and graphene as cathode for sodium ion batteries, Chemistry - A European Journal, 2015, 21 (48), 17371-17378..
28.        Hou, B.-H; Wu, X.-L.*; Wang, Y.-Y.; Lü, H.-Y.; Liu, D.-H.; Sun, H.-Z.; Zhang, J.-P.*; Guan, H.-Y.*, Full Protection for Graphene-Incorporated Micro/Nanocomposites Containing Ultrasmall Active Nanoparticles: Superior Li-Storage Properties, Particle & Particle Systems Characterization, 2015, 32 (11), 1020-1027.
29.        Kang, S.-W.; Xie, H.-M.; Zhang, W.; Zhang, J.-P.; Ma, Z.; Wang, R.-S.*; Wu, X.-L.*, Improve the Overall Performances of Lithium Ion Batteries by a Facile Method of Modifying the Surface of Cu Current Collector with Carbon. Electrochimica Acta 2015, 176, 604-609.
30.        Wang, Y.-Y.; Hou, B.-H.; Lu, H.-Y.; Wan, F.; Wang, J.; Wu, X.-L.*, Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Advances 2015, 5 (118), 97427-97434.
31.        Li, W.; Lü, H.-Y.; Wu, X.-L.*; Guan, H.; Wang, Y.-Y.; Wan, F.; Wang, G.; Yan, L.-Q.; Xie, H.-M.; Wang, R.-S.*, Electrochemical performance improvement of N-doped graphene as electrode materials for supercapacitors by optimizing the functional groups. RSC Advances 2015, 5 (17), 12583-12591.


【2014年及以前】
32.        Mei, P.; Wu, X.-L.*; Xie, H.; Sun, L.; Zeng, Y.; Zhang, J.*; Tai, L.; Guo, X.; Cong, L., Ma, S.; Yao, C.; Wang, R.*, LiV3O8 nanorods as cathode materials for high-power and long-life rechargeable lithium-ion batteries, RSC Advances, 2014, 4, 25494-25501;
33.        You, Y.; Wu, X.-L.; Yin, Y.-X.; Guo, Y.-G., High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy & Environmental Science 2014, 7 (5), 1643-1647; (ESI高引论文)
34.        Wu, X.-L.; Guo, Y.-G.; Su, J.; Xiong, J.-W.; Zhang, Y.-L.; Wan, L.-J., Carbon-Nanotube-Decorated Nano-LiFePO4@C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries. Adv. Energy Mater. 2013, 3 (9), 1155-1160; (ESI高引论文)
35.        Wu, X.-L.; Guo, Y.-G.; Wan, L.-J., Rational Design of Anode Materials Based on Group IVA Elements (Si, Ge, and Sn) for Lithium-Ion Batteries. Chem. Asian J. 2013, 8 (9), 1948-1958; (Focus Review)
36.        Li, Y.-H.†; Wu, X.-L.†; Kim, J.-H.; Xin, S.; Su, J.; Yan, Y.; Lee, J.-S.; Guo, Y.-G., A novel polymer electrolyte with improved high-temperature-tolerance up to 170 C for high-temperature lithium-ion batteries. J. Power Sources 2013, 244 (0), 234-239; (†equal contribution)
37.        Wu, X.-L.; Li, Y.-H.; Wu, N.; Xin, S.; Kim, J.-H.; Yan, Y.; Lee, J.-S.; Guo, Y.-G., Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. Solid State Ionics 2013, 245-246, 1-7;
38.        吴兴隆; 季孟波, 纳米磷酸铁锂材料规模化生产与应用研究进展. 新材料产业 2012, (04), 25-29;
39.        Wu, X.-L.; Xin, S.; Seo, H.-H.; Kim, J.; Lee, J.-S.; Guo, Y.-G., Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ioncs 2011, 186, 1-6;
40.        Wu, X.-L.; Wang, W.; Guo, Y.-G.; Wan, L.-J., Template-Free Synthesis and Supercapacitance Performance of a Hierachically Porous Oxygen-Enriched Carbon Material. J. Nanosci. Nanotech. 2011, 11 (3), 1897-1904;
41.        Wu, X.-L.; Chen, L.-L.; Xin, S.; Yin, Y.-X.; Guo, Y.-G.; Kong, Q.-S.; Xia, Y.-Z., Preparation and Li Storage Properties of Hierarchical Porous Carbon Fibers Derived from Alginic Acid. ChemSusChem 2010, 3 (6), 703-707;
42.        Ji, H. X.; Wu, X. L.; Fan, L. Z.; Krien, C.; Fiering, I.; Guo, Y. G.; Mei, Y.; Schmidt, O. G., Self-Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries. Adv. Mater. 2010, 22 (41), 4591-4595;
43.        Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y.; Cao, X.; Ma, Y.; Yao, J., Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. Adv. Funct. Mater. 2010, 20 (10), 1680-1686; (ESI高引论文)
44.        Wu, X.-L.; Jiang, L.-Y.; Cao, F.-F.; Guo, Y.-G.; Wan, L.-J., LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices. Adv. Mater. 2009, 21 (25-26), 2710-2714; (ESI高引论文)
45.        Wu, X.-L.; Liu, Q.; Guo, Y.-G.; Song, W.-G., Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11 (7), 1468-1471;
46.        Wu, X.-L.; Guo, Y.-G.; Wan, L.-J.; Hu, C.-W., α-Fe2O3 Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage. J. Phys. Chem. C 2008, 112 (43), 16824-16829; (ESI高引论文)
47.        Zhang, W.-M.; Wu, X.-L.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J., Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Adv. Funct. Mater. 2008, 18 (24), 3941-3946; (ESI高引论文)
48.        Wu, X. L.; Cao, M.; Hu, C.; He, X., Sonochemical Synthesis of Prussian Blue Nanocubes from a Single-Source Precursor. Cryst. Growth Des. 2006, 6 (1), 26-28;
49.        Wu, X. L.; Cao, M. H.; Lu, H. Y.; He, X. Y.; Hu, C. W., Microemulsion-mediated solvothermal synthesis and morphological evolution of MnCO3 nanocrystals. J. Nanosci. Nanotech. 2006, 6 (7), 2123-2128;

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

158

主题

173

帖子

199

积分

注册会员

Rank: 2

积分
199
沙发
发表于 2018-3-30 11:08:32 | 只看该作者

吴兴隆副教授在高性能钠离子全电池领域取得重要进展


近日,我院吴兴隆副教授研究小组在材料类国际著名学术期刊Advanced Energy Materials2018, 10.1002/aenm.201703252,影响因子:16.721)上发表了题为“An Ultralong Lifespan and Low-Temperature WorkableSodium-Ion Full Battery for Stationary Energy Storage”的文章,成功设计了一类新型钠离子全电池,表现出超长循环寿命以及优异低温和倍率性能。由于研究成果具有明显应用性且达到实用化水平,在论文发表之前,还申请了相关发明专利4项。


本研究工作以前期开发的高比能Na3V2(PO4)2O2F材料(简写为NVPOF,Advanced Materials 2017,29, 1701968和Advanced Energy Materials 2018,8, 1702504)为正极,新制备的3DSG纳米复合材料为负极,设计装配了工作机理如图1a所示的高性能钠离子全电池3DSG//NVPOF。图1b为所得3DSG//NVPOF钠离子电池的比容量随电流密度的变化情况。可见,在0.02 A g-1这样的低电流密度下,3DSG//NVPOF的比容量达128.1 mA h g-1;当电流密度逐渐增加至2 A g-1或4 A g-1,其比容量仍可为83.1或72.7 mA h g−1。以电流密度为2 A g-1进行举例计算,与0.02 A g-1相比,尽管电流密度增加了100倍,其容量损失率仅为35.1 %。表明装配的3DSG//NVPOF钠离子全电池具有优异的倍率性能。更重要的是,该3DSG//NVPOF电池表现出超长的循环寿命。例如,在室温和1 A g-1的电流密度下循环15000次后,其容量保持率仍高达86.3%。如果以容量保持率为80%作为电池寿命的评价标准,按照使用过程中每天进行1次完全充放电进行计算,该电池的使用寿命可达60年以上。


图1. 3DSG//NVPOF钠离子全电池在室温条件下的储能性能:(a)工作原理示意图;(b)不同电流密度下测试所得的倍率性能;插图为单片软包电池可点亮47个绿色LED灯泡组成的显示屏;(c)在电流密度1 A g-1下的循环性能测试结果。

除了室温下的优异高倍率和长循环寿命外,如图2所示,所装配3DSG//NVPOF钠离子全电池还表现出非常优异的低温储能性能。以0.04 A g-1的电流密度为例,以25 °C下的比容量为标准,15 °C,5 °C,-5 °C,-15 °C和-25 °C下的容量保持率分别为~97.8 %,97.5 %,85.5 %,75.1 %和60.7 %。图2c还进一步给出了3DSG//NVPOF钠离子全电池在不同温度下的循环性能。可以看出,在0.4 A g-1这一电流密度的测试条件下,随着测试温度从25°C逐渐降低到15 °C,5 °C,-5 °C,-15 °C和-25 °C,经过1000圈循环后,相应的容量保持率值分别为96%,95%,90%,94%,89%和75%,表明该电池还可在低温下长时间地循环使用。


  

图2.3DSG//NVPOF钠离子全电池的低温储能性能:(a)容量保持率随电流密度和温度的变化情况;不同温度下(b)功率密度和能量密度之间的关系以及(c)循环稳定性能。


回复 支持 反对

使用道具 举报

17

主题

26

帖子

31

积分

新手上路

Rank: 1

积分
31
板凳
发表于 2018-12-4 11:20:47 | 只看该作者
吴兴隆AM: 石墨负极上构建人工SEI提高双离子电池阴离子脱/嵌循环稳定性
东北师范大学吴兴隆课题组报道了一种新的表面改性策略,通过可控地在石墨电极上构建一个高效人工SEI保护层,来保护石墨负极免受阴离子效应和电解质分解的沉积。这种SEI改性的石墨在5.0V的上截止电压、200mA g-1下500次循环后表现出优异的循环稳定性,与原始石墨电极相比得到了很大改善。通过几项非原位测试研究,揭示了人工SEI在重建和逐步建立最佳阴离子传输路径后,极大地稳定了电极/电解质的界面。该研究为推动双离子电池(DIB)的性能提供了一条新的途径。

Wen‐Hao Li, Qiu‐Li Ning, Xiao‐Tong Xi, Bao‐HuaHou, Jin‐Zhi Guo, Yang Yang, Bin Chen, Xing‐Long Wu, Highly Improved CyclingStability of Anion De‐/Intercalation in the Graphite Cathode for Dual‐Ion Batteries[J], Advanced Materials, 2018.
DOI: 10.1002/adma.201804766
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201804766

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-18 12:33 , Processed in 0.103134 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表