找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1263|回复: 2
打印 上一主题 下一主题

[材料资讯] 南京大学现代工程与应用科学学院谭海仁

[复制链接]

15

主题

26

帖子

30

积分

新手上路

Rank: 1

积分
30
跳转到指定楼层
楼主
发表于 2019-3-1 08:57:46 | 显示全部楼层 |只看大图 回帖奖励 |倒序浏览 |阅读模式
谭海仁南京大学现代工程与应用科学学院教授、博士生导师。2008年毕业于中南大学无机材料系,先后从中科院半导体研究所、荷兰代尔夫特理工大学获得硕士和博士学位,2015年博士毕业后荣获荷兰Rubicon Fellowship到加拿大多伦多大学从事博士后研究工作(导师Edward Sargent教授)。谭海仁博士的主要研究方向为新型薄膜光伏材料及高效率薄膜太阳能电池的设计与制备,曾实现了平面型钙钛矿太阳能电池、非晶硅/微晶硅叠层太阳能电池以及非晶硅/有机聚合物杂化多结太阳能电池转换效率的世界记录,并获得世界光伏大会“青年研究员奖”。在Science, Nature Communications, Nature Energy, Advanced Materials, Nano Letters, JACS等刊物发表论文50余篇,引用2800余次。

谭海仁        
教授        
办公室:        蒙民伟楼1303
Email: hairentan@nju.edu.cn  
课题组网站:https://hairentan.wixsite.com/nju-solarlab-ch

研究方向:
半导体光电材料与器件、钙钛矿太阳能电池及其高效多结光伏器件、硅基太阳能电池、太阳能转换与存储。

教育与工作经历     
2018.03-至今 南京大学 现代工程与应用科学学院  教授   
2015-2018 加拿大多伦多大学  电子与计算机工程系  博士后     
2011-2015 荷兰代尔夫特理工大学  电子工程  博士   
2008-2011 中国科学院半导体研究所  材料物理与化学  硕士   
2004-2008 中南大学  无机非金属材料工程  本科   

科研奖励     
2018年中组部第十四批青年项目   
2017年美国MRS秋季会议最佳海报奖   
2016年荷兰科学研究组织(NWO)Rubicon Fellowship   
2015年代尔夫特理工大学优秀博士论文(Cum Laude)   
2014年世界光伏会议“青年研究员奖”   
2013年国家优秀自费留学生奖学金   

前期工作简介     

谭海仁博士的主要研究方向为新型薄膜光伏材料的光电性质研究及高效率薄膜太阳能电池的设计与制备。在钙钛矿太阳能电池和硅基薄膜太阳能电池领域开展了较为系统深入的研究,实现了平面型钙钛矿太阳能电池、非晶硅/微晶硅叠层太阳能电池以及非晶硅/有机聚合物杂化多结太阳能电池转换效率的世界记录。在Science, Nature Communications, Nature Nanotechnology, Nature Energy, Advanced Materials, Nano Letters, JACS, Progress in Photovoltaics 等刊物发表论文40余篇,引用1900余次。目前主要研究方向为半导体光电材料与器件、钙钛矿太阳能电池及其高效多结光伏器件的材料开发与器件设计。   


在钙钛矿太阳能电池研究中所取得的成果      

此前,高效率的钙钛矿电池一直依赖高温(~500oC)制备的介孔电子传输层,但高温工艺制备较复杂且无法用于需要低温制备条件的柔性器件和叠层器件。可全低温溶液法制备的平面型钙钛矿太阳能电池具有制备工艺简单、能耗小、成本低、用途广等优点,备受研究者关注。然而与高温介孔器件相比,受限于电荷传输层与钙钛矿界面缺陷态密度高、界面结合力较弱,导致低温平面钙钛矿电池效率较低、工作稳定性较差。鉴于此研究背景,谭海仁博士提出了界面氯原子接触钝化原理和技术。通过选择反应源与反应溶剂,在低温条件下制备表面包覆氯原子配体的TiO2纳米晶,并利用极性合适的共混溶剂体系,促使纳米晶在加工溶剂中高度分散并保留表面氯原子配体。理论计算结果表明,界面氯原子能有效地抑制TiO2/钙钛矿界面的深能级缺陷生成,并显著提高电荷传输层与钙钛矿层界面结合力。基于界面氯原子接触钝化技术,我们成功制备了高效稳定的基于全低温工艺的平面型钙钛矿太阳能电池(Science 2017, 355, 722-726)。经权威第三方认证机构(Newport Corporation)认证的转换效率(小面积器件20.1%、大面积器件19.5%)为此前报道的平面型钙钛矿电池的世界最高值。该技术具有工艺简单、可全低温溶液法制备、器件在工作条件下稳定性好等优势,为实现印刷制备柔性器件及构筑高效叠层电池提供了技术支持。   


在多结硅基薄膜太阳能电池及相关杂化多结太阳能电池研究中所取得的成果      

设计和制备高性能的陷光结构同时不会影响电池的电学性能(开路电压和填充因子),是国际上薄膜硅太阳能电池领域亟待解决的关键技术难点。谭海仁博士首次提出将微米尺度的宽口径绒面透明电极应用于微晶硅太阳能电池(Appl. Phys. Lett. 2013, 103, 173905),解决了微晶硅电池中开路电压和填充因子随厚度增加迅速下降的科学难题;通过开发制备高透光性的新型p型纳米晶硅氧窗口材料,获得了同时具有高开路电压和优异短波长光电响应的宽带隙非晶硅太阳能电池(Solar Energy Mater. Solar Cells 2015, 132, 597-605);此系列工作为实现高效率的多结太阳能电池提供了研究基础。基于此,进一步设计和构筑了微米-纳米多尺度绒面结构的新型陷光前电极,实现了世界最高转换效率14.8%的非晶硅/微晶硅双结叠层太阳能电池(Prog. Photovolt.: Res. Appl. 2015, 23, 949-963)。鉴于此项突破,在2014年底召开的第6届国际光伏会议上申报人被邀作专题报告,并荣获青年研究员奖(Young Researcher Award)。在多结硅基薄膜电池中,微晶硅吸光层厚度是非晶硅层的10倍左右,厚的微晶硅层在某种程度上增加了制备时间和能耗成本。利用吸光极强的红外光敏有机太阳能电池替代较厚的微晶硅结,将薄膜硅和有机光伏材料两者结合,构筑了具有宽光谱吸收的超薄杂化多结太阳能电池。通过非晶硅材料的能隙调节和引入陷光结构,实现子电池间的光电流匹配,获得了13.2%转换效率的非晶硅/有机聚合物杂化多结电池(Adv. Mater. 2016, 28, 2170-2177),属于同类型杂化多结器件报道的最高值。该工作为开发下一代低成本、高效率的多结太阳能电池提供了新的思路和方向。   

近期代表性文章   (* Corresponding author, ǂ equal contribution)     
H. Tan  , A. Jain, O. Voznyy, X. Lan, P. de Auquer, J. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, and E. H. Sargent*. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science    355, 722-726 (2017) .   
H. Tan  ǂ ,   F. Cheǂ, M. Weiǂ, Y. Zhao, M. I. Saidaminov, P. Todorovic, D. Broberg, G. Walters, F. Tan, T. Zhuang, B. Sun, Z. Liang, H. Yuan, E. Fron, J. Kim, Z. Yang, O. Voznyy, M. Asta, and E. H. Sargent*. Dipolar cations confer defect tolerance in wide bandgap perovskites. Nature Communications.  (Minor revision)  
Y. Zhaoǂ, H. Tanǂ  , H. Yuanǂ, Z. Yang, J. Fan, J. Kim, O. Voznyy, X. Gong, L. N. Quan, C. S. Tan, J. Hofkens, D. Yu, Q. Zhao*, E. H. Sargent*. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications 9, 1607    (2018).   
M. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan , G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, and E. Sargent*. Suppressing Atomic Vacancies via Incorporation of Isovalent Small Ions Increases the Stability of Halide Perovskite Solar Cells in Air Ambient. Nature Energy . (In press)   
J. Xu, O. Voznyy, M. Liu, A. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A. Proppe, A. Sarkar, P. de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan  , S. Hoogland, S. Kelley, M. Stefik, A. Amassian, E. Sargent. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology  (2018). doi:10.1038/s41565-018-0117-z   
L. Zhang, X. yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang*, H. Tan , Y. Yang, M. Wei, B. Sutherland, E. Sargent, and J. You*. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications  8, 15640 (2017). DOI:10.1038/ncomms15640.   
H. Tanǂ   , A. Furlanǂ, W. Li, K. Arapov, R. Santbergen, M. Wienk, M. Zeman, A. Smets, and R. A. J. Janssen*. Highly efficient hybrid polymer and amorphous silicon multijunction solar cells with effective optical management. Advanced Materials    28, 2170-2177 (2016) .   
H. Tan  *, R. Santbergen, A. Smets, and M. Zeman. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Letters    12, 4070-4076 (2012).         
H. Tan*  , E. Moulin, F. Si, M. Stuckelberger, J. Schüttauf, O. Isabella, F. Haug, C. Ballif, M. Zeman, and A. Smets*. Highly transparent modulated surface textured front electrodes for high-efficiency multijunction thin-film silicon solar cells. Progress in Photovoltaics: Research and Applications    23, 949-963 (2015) .   
H. Tan*  , P. Babal, M. Zeman, and A. Smets*. Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells. Solar Energy Materials and Solar Cells      132, 597-605 (2015 ).   
A. Proppe, R. Quintero-Bermudez, H. Tan , O. Voznyy, S. Kelley, and E. H. Sargent*. Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics. Journal of the American Chemical Society  140, 2890–2896 (2018).   
J. Kim, M. Saidaminov, H. Tan , Y. Zhao, Y. Kim, J. Choi, J. Jo, J. Fan, R. Quintero-Bermudez, Z. Yang, L. Quan, M. Wei, O. Voznyy*, and E. H. Sargent*. Amide-catalyzed phase-selective crystallization reduces defect density in wide-bandgap perovskites. Advanced Materials  30, 1706275 (2018).     
Y. Zhaoǂ, W. Zhouǂ, H. Tan ǂ, R. Fu, Q. Li, F. Lin, D. Yu, G. Walters, E. H. Sargent*, and Q. Zhao*. Mobile-ion-induced degradation of organic hole-selective layers in perovskite solar cells. The Journal of Physical Chemistry C  121, 14517-14523 (2017).   
H. Sun, Z. Yang, M. Wei, W. Sun, X. Li, S Ye, Y. Zhao, H. Tan , E. Kynaston, T. Schon, H. Yan, Z. Lu, G. Ozin, E. H. Sargent*, and D. Seferos*. Chemically addressable perovskite nanocrystals for light-emitting applications. Advanced Materials . DOI: 10.1002/adma.201701153. (2017)   
B. Sun, O. Voznyy, H. Tan , P. Stadler, M. Liu, G. Walters, A. Proppe, M. Liu, J. Fan, T. Zhuang, J. Li, M. Wei, J. Xu, Y. Kim, S. Hoogland, and E. H. Sargent*. Pseudohalide-exchanged quantum dot solids achieve record quantum eficiency in infrared photovoltaics. Advanced Materials    29, 1700749 (2017)   
L. N. Quan, Y. Zhao, F. de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Fan, H. Tan , J. Pan, M. Yuan, O. Bakr, Z. Lu, D. H. Kim, and E. H. Sargent*. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Letters    17, 3701-3709 (2017).     
Y. Kim, K. Bicanic, H. Tan , O. Ouellette, B. R. Sutherland, F P. G. de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent*. Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Letters    17, 2349–2353 (2017).   
N. Wang, M. Liu, H. Tan , J. Liang, Q. Zhang, C. Wei, Y. Zhao, E. H. Sargent, and X. Zhang*. Compound homojunction: heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting. Small   , 1603527 (2017). DOI: 10.1002/smll.201603527      
X. Lan, O. Voznyy, F. P. de Arquer, M. Liu, J. Xu, A. Proppe, G. Walters, F. Fan, H. Tan , M. Liu, Z. Yang, S. Hoogland, and E. H. Sargent*. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Letters      16, 4630-4634 (2016).      
M. Fischer, H. Tan  * , J. Melskens, R. Vasudevan, M. Zeman, and A. Smets* . High pressure processing of hydrogenated amorphous silicon solar cells: Relation between nanostructure and high open-circuit voltage. Applied Physics Letters    106, 043905 (2015) .   
H. Tan*  , E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. Smets*. Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells. Applied Physics Letters      103, 173905 (2013) .   
H. Tan*  , R. Santbergen, G. Yang, A. Smets, and M. Zeman. Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells. IEEE Journal of Photovoltaics    3, 53-58 (2013) .   
H. Tan*  , B. Yan, L. Sivec, R. Santbergen, M. Zeman, and A. Smets*. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption. Applied Physics Letters    102, 153902 (2013) .   

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-14 16:01 , Processed in 0.090101 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表